Мотор колесо шкондина его конструкция и электросхема

Валерий Дудышев: Вечный электромагнитный двигатель-генератор

Настоящая статья посвящена разработке и описанию принципа работы, конструкций и электрической схемы простого оригинального «вечного» электромагнитного двигателя –генератора нового типа с электромагнитом на статоре и всего с одним постоянным магнитом(ПМ) на роторе, с вращением этого ПМ в рабочем зазоре этого электромагнита.

ВЕЧНЫЙ ЭЛЕКТРОМАГНИТНЫЙ ДВИГАТЕЛЬ-ГЕНЕРАТОР С ЭЛЕКТРОМАГНИТОМ НА СТАТОРЕ И МАГНИТОМ НА РОТОРЕ

Проблема создания вечных двигателей многие столетия будоражит умы многих изобретателей и ученых всего мира и является по-прежнему актуальной.

Интерес к этой теме «вечных двигателей» со стороны мирового сообщества по- прежнему огромный и все возрастающий, по мере роста потребностей цивилизации в энергии и в связи со скорым исчерпанием органического невозобновляемого топлива и особенно в связи с наступлением глобального энергетического и экологического кризиса цивилизации. При построении общества будущего, безусловно, важно заниматься разработкой новых источников энергии, способных обеспечить наши потребности. А сегодня для России и многих иных стран это просто жизненно необходимо. В будущем восстановлении страны и грядущем энергетическом кризисе новые источники энергии, основанные на прорывных технологиях, будут совершенно необходимы.

Взоры многих талантливых изобретателей, инженеров и ученых давно прикованы к постоянным магнитам (ПМ) и к их таинственной и удивительной энергетике. Причем этот интерес к ПМ даже усиливается в последние годы, в связи со значительным прогрессом в создании сильных ПМ, а отчасти, в связи с простотой предлагаемых конструкций магнитных двигателей (МД).

Сколько энергии спрятано в постоянном магните и откуда она там?

Очевидно, что современные компактные и мощные ПМ таят в себе значительную скрытую энергию магнитного поля. И цель изобретателей и разработчиков таких магнитных двигателей и генераторов состоит в выделении и преобразовании этой скрытой энергии ПМ в иные виды энергии, например, в механическую энергию непрерывного вращение магнитного ротора или в электроэнергию.

Уголь при сгорании выделяет 33 Дж на грамм, нефть, которая через 10-15 лет у нас начнет подходить к концу, выделяет 44 Дж на грамм, грамм урана дает 43 миллиарда Дж энергии. В постоянном магните теоретически содержится 17 миллиардов Дж энергии. на один грамм. Конечно, как и у обычных источников энергии, КПД магнита не будет стопроцентным, к тому же у ферритового магнита срок жизни около 70 лет, при условии, что на него не действуют сильные физические, температурные и магнитные нагрузки, впрочем, при таком количестве заключенной в нем энергии, это не так уж и важно. К тому же, есть еще уже серийные промышленные магниты из редких металлов, которые в десять раз сильнее ферритовых и соответственно эффективнее. Потерявший силу магнит можно просто «перезарядить» сильным магнитным полем. Однако вопрос «откуда в ПМ столько энергии» – остается в науке пока открытым. Многие ученые считают, что энергия в ПМ непрерывно поступает извне от эфира (физического вакуума). А иные исследователи утверждают, что она просто возникает в нем самом из-за намагниченного материала ПМ. Пока ясности тут нет.

КРАТКИЙ ОБЗОР ИЗВЕСТНЫХ ЭЛЕКТРОМАГНИТНЫХ ДВИГАТЕЛЕЙ И ГЕНЕРАТОРОВ

В мире есть уже много патентов и инженерных решений различных конструкций магнитных двигателей – но практически пока нет в показе таких действующих МД в режиме «вечных двигателей». И до сих пор «вечные» промышленные магнитные двигатели (МД) так не созданы и не освоены в серии и не внедряются в реалии и тем более их нет пока в открытой продаже. К сожалению, известная информация в Интернете о серийных магнитных мотор-генераторах фирм «Перендев» (Германия) и «Акойл-энергия» пока в реалии не подтверждается. Возможных причин медленного реального в металле прогресса в МД много, но по-видимому главные причины две: или по причине засекречивания этих разработок они не доводятся до серийного производства или по причине низких энергетических показателей опытно-промышленных образцов МД. Следует отметить, что некоторые проблемы создания чисто магнитных двигателей с механическими компенсаторами и магнитными экранами, например, МД шторочного типа, наукой и техникой пока так полностью, и не решены.

Классификация и краткий анализ некоторых известных МД

  1. Магнито–механические магнитные моторы Дудышева /1-3/. При их конструктивной доводке вполне могут работать в режиме “вечных двигателей”.
  2. Двигатель МД Калинина – неработоспособный возвратно-поступательный МД с вращающимся магнитным экраном – МД по причине не доведенного до правильного конструктивного решения пружинного компенсатора.
  3. Электромагнитный мотор «Перендев» – классический электромагнитный двигатель с ПМ на роторе и компенсатором, неработоспособный без процесса коммутации в зонах прохождения мертвых точек удержания ротора с ПМ. В нем возможны два вида коммутации (позволяющей проходить «точку удержания» ПМ ротора – механическая и электромагнитная. Первая автоматически сводит задачу к закольцованному варианту SMOT’a (и ограничивает скорость вращения, а значит и мощность), о второй ниже. В режиме «вечного двигателя» работать не может.
  4. Электромагнитный Двигатель Минато – классический пример электромагнитного двигателя с ПМ ротора и электромагнитным компенсатором, обеспечивающим проход магнитного ротора «точки удержания» (по Минато «точка коллапса»). В принципе это просто рабочий электромагнитный мотор с повышенным кпд. Максимальный достижимый КПД – ориентировочно 100% неработоспособен в режиме «вечного» МД.
  5. Мотор Джонсона – аналог электромагнитного мотора «Перендев» с компенсатором, но с еще более низкой энергетикой.
  6. Магнитный мотор–генератор Шкондина – электромагнитный мотор с ПМ, работающий на силах магнитного отталкивания ПМ (без компенсатора). Конструктивно сложен, имеет коллекторно-щеточный узел, его к.п.д. порядка 70-80%. Неработоспособен в режиме вечного МД.
  7. Электромагнитый Мотор–генератор Адамса – это по сути наиболее совершенный из всех известных – электромагнитный мотор–генератор, работающий как и мотор-колесо Шкондина, только на силах магнитного отталкивания ПМ от торцов электромагнитов. Но этот мотор-генератор на ПМ конструктивно намного проще магнитного мотора–генератора Шкондина. В принципе, его КПД может только приближаться к 100%, но только обязательно при условии коммутации обмотки электромагнита коротким высокоинтенсивным импульсом с заряженного конденсатора. Неработоспособен в режиме «вечного» МД.
  8. Электромагнитный мотор Дудышева. Обратимый электромагнитный двигатель с внешним магнитным ротором и центральным статорным электромагнитом). КПД его не более 100% из-за разомкнутости магнитопровода /3/. Этот ЭМД проверен в работе (фото макета имеется).

Известны и другие ЭМД, но они примерно таких же принципов действия. Но тем не менее, развитие теории и практики магнитных двигателей в мире все же постепенно идет. И особенно ощутимый реальный прогресс по МД наметился именно по малозатратным совмещенным магнито-электромагнитным двигателям с применением в них высокоэффективных постоянных магнитов. Эти ближайшие аналоги столь важных для мирового сообщества – прообразы вечных магнитных двигателей называются – электромагнитные двигатели–генераторы (ЭМДГ) с электромагнитами и постоянными магнитами на статоре или роторе. Причем они уже реально существуют непрерывно совершенствуются и даже некоторые из них уже серийно выпускаются. Достаточно много появилось сообщений в Интернете и статей о их конструкциях с фото и их экспериментальных исследованиях. Например, известны эффективные, уже испытанные в металле – относительно малозатратные электромагнитные моторы–генераторы Адамса /1/. Причем некоторые простейшие конструкции совмещенных ЭМДГ даже уже дошли до серийного выпуска и массового внедрения. Это, например, серийные электромагнитные мотор-колеса Шкондина, применяемые на электровелосипедах.

Однако конструкции и энергетика всех известных ЭМДГ пока еще достаточно неэффективные, что не позволяет им работать в режиме «вечного двигателя», т.е. без внешнего источника электроэнергии.

Тем не менее, пути конструктивного и радикального энергетического совершенствования известных ЭМДГ есть. И именно такие более энергетически совершенные их варианты, которые могут справиться с этой непростой задачей – полностью автономной работы в режиме «вечного» электромагнитного мотор- генератора -вообще без потребления электроэнергии от внешнего источника и рассматриваются в настоящей статье.

Настоящая статья посвящена разработке и описанию принципа работы оригинальной конструкции простого электромагнитного двигателя –генератора нового типа с дуговым электромагнитом на статоре и всего с одним постоянным магнитом(ПМ) на роторе, с полярным вращением этого ПМ в зазоре электромагнита, которая вполне работоспособна и в режиме «вечного двигателя-генератора».

Ранее и частично данная конструкция такого необычного полярного ЭМД в ином обратимом варианте уже апробирована на действующих макетах автора статьи и показала работоспособность и достаточно высокие энергетические показатели.

Описание конструкции и электрической схемы модернизированного ЭМДГ

Рис.1 Электромагнитный мотор-генератор с ПМ на роторе, внешним электромагнитом переменного тока на статоре и электрогенератором на валу магнитного ротора

Упрощенная конструкция электромагнитного двигателя- генератора (ЭМДГ) такого типа и его электрическая часть приведены на рис. 1. Она состоит из трех основных узлов – из непосредственно МД с электромагнитом на статоре и ПМ на роторе и электромеханического генератора на одном валу с МД. Устройство МД состоит из статорного статического электромагнита 1, выполненного на кольцевом с вырезанным сегменте или на дуговом магнитопроводе 2 с индуктивной катушкой 3 этого электромагнита и присоединенным к ней электронным коммутатором реверса тока в катушке 3 и постоянного магнита (ПМ) 4, жестко размещенного на роторе 5 в рабочем зазоре этого электромагнита 1. Вал вращения ротора 5 ЭМД соединен муфтой с валом 7 электрогенератора 8. Устройство снабжено простейшим регулятором -электронным коммутатором 6, (автономным инвертором), выполненным по схеме простого мостового полууправляемого автономного инвертора, электрически присоединенного по выходу к индуктивной обмотке 3 электромагнита 2 а по входу электропитания – к автономному источнику электроэнергии 10. Причем реверсивная индуктивная обмотка 3 электромагнита 1 включена в диагональ переменного тока этого коммутатора 6 а по цепи постоянного тока этот коммутатор 6 присоединен к буферному источнику постоянного тока 10, например к аккумуляторной батарее (АБ) Электрический выход электромашинного генератора 8 присоединен либо непосредственно к обмоткам индуктивной катушки 3, либо через промежуточный электронный выпрямитель(не показан )к буферному источнику постоянного тока (типа АБ) 7.

Мостовой простейший электронный коммутатор (автономный инвертор) выполнен на 4-х полупроводниковых вентилях, содержит в плечах моста два силовых транзистора 9 и два неуправлямых бесконтактных ключа односторонней проводимости (диода) 10. На электромагнитном статоре 1 этого МД размещены также два датчика 11 положения магнита ПМ 5 ротора 6, вблизи траектории его движения 15 причем в качестве датчика положения ПМ-магнита 5 ротора использованы простые контактные датчики напряженности магнитного поля – герконы. Эти датчики положения 11 магнита 4 ротора 5 размещены в квадратуре – один датчик размешен возле торца соленоида с полюсами а второй- со сдвигом на 90 градусов (герконовые реле), вблизи траектории вращения ПМ5 ротора 6. Выходы этих датчиков положения 11 ПМ 5 ротора -герконовых реле присоединены через усилительно- логическое устройство 12 на управляющие входы транзисторов 9. К выходной обмотке электрогенератора 8 присоединена через выключатель (не показан) полезная электрическая нагрузка 13. В электрической цепи коммутатора 6 и цепи электропитания катушки 3 имеется элементы защиты и управления, в частности автоматический переключатель от пускового блока постоянного тока на полное электропитание от электрогенератора 8 ( не показаны ).

Отметим основные конструктивные особенности такого МД по сравнению с аналогами:

1. Применен многовитковый экономичный низкоамперный дуговой электромагнит.

2. Постоянный магнит 4 ротора 5 вращается в зазоре дугового электромагнита 1, именно магнитными силами притягивания – отталкивания ПМ 5. Вследствии изменения магнитной полярности магнитных полюсов в зазоре этого электромагнита при циклическом переключения (реверсе) направления тока в катушке 3 электромагнита 1 от коммутатора 5 по команде датчиков положения 11 ПМ магнита 4 ротора 5. Отметим также, что ротор 5 целесообразно делать массивным из немагнитного материала для выполнения им полезной функции маховика-инерциоида.

Обратимый электромагнитный двигатель с внешним ПМ на роторе

В принципе, возможен и обратимый вариант конструкции ЭМД, в котором ротор с постоянным магнитом ПМ на ободе размещен снаружи электромагнита. Ранее такой вариант обратимого ЭМД автором статьи был разработан, создан и успешно опробован в работе, причем еще в 1986 г. Ниже, на рис.2,3 приводится также упрощенная конструкция такого апробированного ранее ЭМДГ, описанная ранее в статьях автора /2-3/

Конструкция (неполная) макета простейшего ЭМД с внешним постоянным магнитом на роторе и со снятым электромагнитом статора ЭМД, показана на фото (рис.3). В реалии электромагнит размещен штатно в центре цилиндрического диэлектрического немагнитного прозрачного цилиндра с верхней крышкой, на которой крепится вал вращения данного ЭМД. Коммутатор и прочая электрика на фото не показаны.

Запуск и разгон магнитного ротора ЭМДГ до установившейся скорости

Запуск ЭМДГ осуществляем подачей электрического тока в катушку 3 электромагнита 2 от блока электропитания 10. Исходное положение магнитных полюсов постоянного магнита 4 ротора перпендикулярное зазору электромагнита 2 Полярность магнитных полюсов электромагнита возникает при этом такая, что постоянный магнит 4 ротора 5 начинает поворачиваться на своей оси вращения 16, магнитными силами, притягиваясь своими магнитными полюсами к противоположным магнитным полюсом электромагнита 2. В этот момент совпадения разноименных магнитных полюсов магнита 4 и торцов в зазоре электромагнита 2 ток в катушке 3 выключают по команде магнитного герконового реле ( или синусоида этого тока проходит через ноль) и по инерции массивный ротор проходит эту мертвую точку его траектории вместе с ПМ 4. После этого изменяют направление тока в катушке 3 и магнитные полюса электромагнита 2 в этом рабочем зазоре становятся одноименными с магнитными полюсами постоянного магнита 4. В результате силами магнитного отталкивания одноименных магнитных полюсов –постоянный магнит 4 ротора и сам ротор получают дополнительный ускоряющий момент, действующий в направлении вращения ротора в ту же прежнюю сторону. После достижения положения магнитных полюсов ПМ ротора – по мере его вращения –вдоль магнитного меридиана, в катушке 3 вновь изменяют направления тока по команде второго магнитного датчика положения 11, вновь возникает реверс магнитных полюсов электромагнита 2 в рабочем зазоре и постоянный магнит 4 снова начинает притягиваться к ближайшим по направлению вращения разноименным магнитным полюсам электромагнита 2 в его зазоре. И далее процесс разгона ПМ 4 и ротора – путем цикличного реверса электрического тока в катушке 3 цикличным переключением транзисторов 8 коммутатора 7 от датчиков положения 11 ПМ ротора многократно повторяется циклично. Причем одновременно по мере ускорения ПМ 4 и ротора 5 автоматически возрастает и частота реверсов электрического тока в катушке 3, благодаря наличию в этой электромеханической системе положительной обратной связи по цепи через коммутатор и датчики положения ПМ 4 ротора.

Отметим, что направление электрического тока в катушке 3 (на рис. 1 показано стрелками) изменяется в зависимости от того, какой из транзисторов 8 коммутатора 7 открыт. Изменением частоты переключения транзисторов изменяем частоту переменного тока в катушке 3 электромагнита и соответственно изменяем и скорость вращения ПМ 4 ротора 5.

ВЫВОД: Таким образом, постоянный магнит ротора за полный оборот вокруг своей оси практически непрерывно испытывает однонаправленный ускоряющий момент от силового магнитного взаимодействия с магнитными полюсами электромагнита, который и приводит его во вращение и постепенно разгоняет его и электрический генератор на общем валу вращения до заданной установившейся скорости вращения.

Прямой метод электрического управления обмоткой статорного электромагнита ЭМДГ в зависимости от положения ПМ ротора

Дополнительным новшеством для обеспечения такого метода управления обмоткой электромагнита 3 МД переменным током требуемой частоты и фазы непосредственно с выхода электрогенератора переменного тока в установившемся режиме работы является введение в такой системе магнитный двигатель – электрогенератор параллельная резонансная L-C цепь – в контуре две индуктивности –от катушки 3 и статорной обмотки генератора и дополнительная электроемкость введение в выходную электроцепь электрогенератора 8 дополнительного электрического конденсатора 17 для обеспечения его самовозбуждения и последующего электрического L-C резонанса, для снижения электрических потерь и для предельно простого управления индуктивностью 3 переменным током с нужной фазой напряжения и тока непосредственно от генератора 8.

Полностью автономный режим («вечный двигатель») ЭМДГ

Совершенно очевидно, что для обеспечения работы данного устройства в режиме «вечного двигателя» необходимо получить от постоянных магнитов ротора свободную энергию, достаточную для выработки электрогенератором на валу ЭМД требуемой для этой полностью автономной работы системы- электроэнергии. Поэтому важнейшим условием является обеспечение достаточного по величине крутящего момента магнитного ротора этого МД для выработки электрогенератором на его валу достаточного количества электроэнергии, которого бы с избытком хватило и на электропитание катушки электромагнита ,и на полезную нагрузку заданной величины и на компенсацию различных неизбежных потерь в такой электромеханической системы с ПМ на роторе. После раскрутки ПМ 4 и достижения ротором 5 номинальных оборотов, электропитание катушки 3 переключаем осуществляем уже непосредственно от электрогенератора или через дополнительный преобразователь напряжения а стартерный источник электроэнергии либо вообще отключаем либо переводим его в режим подзарядки от электрического генератора на валу этого ЭМД.

НЕОБХОДИМЫЕ УЗЛЫ КОНСТРУКЦИИ И АЛГОРИТМЫ УПРАВЛЕНИЯ ДЛЯ РАБОТЫ ДАННОГО МОТОР-ГЕНЕРАТОРА В РЕЖИМЕ “ВЕЧНОГО ДВИГАТЕЛЯ”

Это важное условие работы МД в режиме «вечного двигателя» может быть выполнено только при одновременном выполнении как минимум шести условий:

1. применение в МД современных сильных ниобиевых постоянных магнитов, обеспечивающих максимальный момент вращения такого ротора при минимальных габаритах ПМ.

2. применение на статоре МД эффективной сверхмалозатратной схемы электромагнита МД за счет предельно высокого количества витков в обмотке электромагнита и правильного эффективного конструирования его магнитопровода и обмотки.

3. необходимость пускового устройства и стартерного источника электроэнергии для запуска и разгона МД с электропитанием катушки электромагнита от коммутатора.

4. правильный алгоритм управления электрическим током в обмотке электромагнита по направлению, величине в зависимости от положения ПМ ротора.

5. согласование электрических параметров электрогенератора и обмотки электромагнита.

6. правильный алгоритм коммутации цепей электропитания обмотки электромагнита при включения цепи электрогенератора в цепь электропитания обмотки электромагнита и перевода пускового источника электроэнергии, например АБ из режима разрядки в режим его электрической подзарядки.

МАЛОЗАТРАТНЫЙ ЭЛЕКТРОМАГНИТ СТАТОРА ЭМД

Все, кто достаточно хорошо знакомы с принципом действия и устройством электромагнита, наверняка знают, что электромагнит притягивает посторонние ПМ или металлы именно на постоянном токе. Причем многие его выходные параметры, например, подъемная сила электромагнита и его электропотребление, а, значит и кпд( в смысле энергетической эффективности ватт/на кг подымаемого им груза, определяются в основном, конструкцией, магнитными характеристиками магнитопровода и параметрами обмотки электромагнита и величиной его рабочего зазора.

Известно, что любой магнитопровод обладает магнитной петлей гистерезиса, и что его магнитная энергия, определяется произведением ВхН, где В- магнитная индукция а Н-коэрцитивная сила.

В случае нашего ЭМД существуют цикличные интервалы его работы во времени, в которые по обмотке электромагнита протекает знакопостоянный ток, при подаче электрического тока в обмотку электромагнита от электронного коммутатора. Именно поэтому к данному электромагниту тоже вполне применима известная методика расчета электромагнитов постоянного тока.

Ориентировочный расчет электромагнита. Зададим тяговое усилие нашего электромагнита порядка 100 Н =10 кг и рассчитаем примерно некоторые конструктивные параметры этого электромагнита при рабочем зазоре электромагнита порядка 1-2 см. Тяговая сила Pэм . развиваемая электромагнитом, вычисляется по формуле полученной на основе баланса энергии (энергетическая формула). В условиях равномерного распределения индукции в рабочем воздушном зазоре эта формула преобразуется в формулу Максвелла:

По основной кривой намагничивания для низкоуглеродистой стали, находим среднее значение магнитной напряженности Hc в стали магнитопровода. Hc = 600. При правильном конструировании электромагнита можно достигнуть максимума его силы магнитного силового взаимодействия его магнитных полюсов с сильными постоянными магнитами ротора ЭМДГ при минимуме электропотребления обмоткой данного электромагнита, что и обеспечивает избыточную мощность на валу нашего электромагнитного ЭМДГ.

О выборе постоянных магнитов для ротора «вечного» ЭМДГ. Наиболее важными элементами данного устройства «вечного двигателя». безусловно являются постоянные магниты, которые по сути и являются источником энергии для всей этой системы. Поэтому от их правильного выбора зависит работоспособность этой системы и ее энергетические показатели. Постоянные магниты характеризуются тремя основными параметрами: остаточной магнитной индукцией Вr, коэрцитивной силой Нc и энергетическим произведением BH.

Вr определяет величину магнитного потока. Если в генератор поставить магниты с большей магнитной индукцией, то пропорционально (грубо говоря) увеличится напряжение на обмотках, а значит и мощность генератора.

Нc определяет магнитное напряжение. Если в генератор поставить магниты с большей коэрцитивной силой, то магнитное поле сможет преодолевать большие воздушные зазоры. И сможет «поддержать ток» в большем числе виков статора. При переделке промышленного генератора на постоянные магниты мотать добавочные витки обычно некуда, поэтому повышенная коэрцитивная сила полезна при изготовлении самодельных генераторов со статором не имеющим железа. Чтобы «пробить» значительные воздушные промежутки без большой Нc не обойтись. Редкоземельные магниты лидеры по этому показателю. BH вычисляется в расчете на 1 м3 магнитов, Это произведение получается меньше чем просто произведение Вr на Нc. По величине BH можно судить о том, насколько будут малы габариты магнитной системы.

Теперь о том, какие бывают магниты. Для изготовления самодельных магнитных моторов-генераторов целесообразно применять только два вида магнитов: ферритовые, которые используются в динамиках и самые мощные в настоящее время РЗМ (редкоземельный металл) магниты из неодима. Ориентировочные характеристики их такие (учтите, что разброс параметров очень большой, даны некие средние цифры):

Феррит-бариевые магниты:

4500 кг/м3; Вr = 0,2 – 0,4 Тл; Нc = 130 – 200 кА/м; BH = 10 – 30 кДж/м3; цена 100 – 400 руб/кг; максимальная температура 250 градусов.

Феррит-стронциевые магниты:

4900 кг/м3; Вr = 0,35 – 0,4 Тл; Нc = 230 – 250 кА/м; BH = 20 – 30 кДж/м3; цена 100 – 400 руб/кг; максимальная температура 250 градусов.

РЗМ магниты Nd-Fe-B:

7500 кг/м3; Вr = 0,8 – 1,4 Тл; Нc = 600 – 1200 кА/м; BH = 200 – 400 кДж/м3; цена 2000 – 3000 руб/кг; максимальная температура 80 – 200 градусов.

Если посчитать стоимость одного кубометра магнита и затем разделить на BH, на количество запасенных там джоулей, то окажется, что бариевые магниты раза в два дешевле неодимовых по стоимости энергии, имеющейся в магнитах. Но этот выигрыш «съедается» большими габаритами генератора и более тяжелой обмоткой, железом. Поэтому применять в самодельном электромагнитном мотор-генераторе дорогие неодимовые магниты довольно выгодно. А по мере того, как они дешевеют, то неодимовые магниты становятся вне конкуренции.

Выбор типа электрогенератора для использования его в “вечном” ЭМДГ

Возникает вопрос – какой же электрогенератор выбрать для применения в этом необычном электромагнитном мотор-генераторе? Например, на этапе его реального макетирования? Вполне логично взять для этих целей, по-видимому, стандартный автомобильный электрогенератор с готовым п/п выпрямителем ,системой управления и узлом согласования его параметров с параметрами бортовой автомобильной аккумуляторной батареи (АБ)и скоростью вращения ПМ ротора ЭМД.

ВЕЧНЫЙ ШТОРОЧНЫЙ ЭЛЕКТРОМАГНИТНЫЙ ДВИГАТЕЛЬ-ГЕНЕРАТОР С ЭЛЕКТРОМАГНИТОМ ПОСТОЯННОГО ТОКА

Описанная в настоящей статье конструкция вечного электромагнитного мотор-генератора с электромагнитом переменного тока может быть выполнена и на электромагните постоянного тока без электронного коммутатора и без его электромагнитной переполюсовки магнитных полюсов торцов электромагнита в рабочем зазоре за счет реверса направления тока в катушке электромагнита.

Это существенно упрощает электрику и электронику данного ЭМДГ, но взамен требует введения в его конструкцию вращающегося магнитного экрана с механическим коммутатором магнитного поля на валу магнитного ротора, который и обеспечивает синхронную экранировку магнитных полей статора и ротора в нужные моменты времени, по мере вращения магнитного ротора для обеспечения однонаправленного электромагнитного момента вращения ПМ ротора. Анимация его работы показана ниже.

Описание конструкции шторочного «вечного» ЭМДГ Дудышева

Этот вечный электромагнитный МДГ состоит из статорного неподвижного кольцевого электромагнита 1 с обмоткой 6 на магнтопроводе 1 с рабочим зазором. магнитного ротора на постоянном магните 9 и диска со шторками –магнитными экранами 2. с внешним расположением шторочного обода относительно ПМ ротора и независимым вращение концентрично с ним. Кроме того, на общем выходном валу этого электромагнитного двигателя размещен маховик 5 и обратимый электромотор -стартер-генератор 7, а на статорном электромагните 1 размещена индуктивная обмотка 6, электрически присоединенная через выпрямитель к индуктивными обмотками эл стартер–генератора.

Описание работы шторочного «вечного» ЭМДГ Дудышева

Этот вечный мотор запускается в работу от электрической машины 7, связанной общим валом 10 валом с ПМ ротором 9 и диском 2 со шторками – магнитными экранами после этого данная Эл машина переходит в генераторный режим.

Алгоритм работы такого МД должен обеспечивать взаимосвязанное перемещении шторок на диске 2 и магнита ротора 9 так, чтобы при повороте магнитного ротора 9 и шторочного диска 2 с магнитными экранами обеспечивать циклическую магнитную экранировку одноименных магнитных полюсов 3,4 статорного электромагнита 1 (или дугового магнита) от одноименных магнитных полюсов магнитного ротора 9 в моменты их прохождения ПМ ротора.

Т.е. необходимо обеспечивать техническими средствами такое взаимное перемещение магнитного ротора 9 и диска с шторками 2. что эти магнитные экраны –шторки оказывались точно между их одноименными магнитными полюсами этого неподвижного электромагнита статора 1 и магнита ротора 9 в тот момент когда совпадают одноименные магнитные полюса статорного и роторного ПМ –магнитов.

При самовращении магнита ротора 9 в таком шторочном МД в индуктивной обмотке электромагнита и обмотке электрогенератора 7 будет наводиться электродвижущая сила -эдс Фарадея, которая будет использоваться для получения электроэнергии внешним электропотребителям ( не показаны).

Отметим возможность двух режимов работы электрической машины 7 после выхода шторочного МД в установившийся режим работы:

1. При принудительном вращения ротора эл мотора 7 он может работать эл. генератором

2. В случае электрического присоединения к нему – мотору 7 – обмоток индуктивной обмотки 6 – он работает в режиме электромотор–генератора, передающего момент вращения на общий вал 10 шторочного МД.

Вечный электромагнитный мотор–генератор на обычном индуктивном электросчетчике

Наиболее просто реализовать простой действующий макет такого »вечного» электромагнитного двигателя на обычном индуктивном электросчетчике. В конструкции такого индуктивного электросчетчика уже есть готовый электромагнит с многовитковой индуктивной обмоткой и есть немагнитный ротор, т.е. уже есть практически все, что нужно для полноценной конструкции нашего вечного МД кроме коммутатора и постоянных магнитов на этом роторе. Конструкция этого индуктивного электросчетчика показана на рис.6 Благодаря малому зазору между верхними и нижними частями магнитопровода стандартного трансформатора напряжения этого электросчетчика достигается значительная напряженность магнитного поля в этом зазоре, что способствует повышению момента вращения постоянных магнитов ротора. в отличии от конструкции МД с полярным вращением этих ПМ ротора. Естественно, этот рабочий зазор в магнитопроводе должен быть достаточным по высоте для прохода ротора с размещенными на нем ПМ. при его вращении. В качестве постоянных магнитов ротора рекомендуем использовать 3-6 дисковых сильных магнитов на основе ниобиевых сплавов. высотой не более 10 мм с жестким закреплением их на роторе в специальных немагнитных обоймах. Электронный коммутатор в виде автономного мостового инвертора присоединен в выходам обмотки электромагнита, а электропитание коммутатор в режиме запуска ЭМД получает от малогабаритной аккумуляторной батареи (на рис. не показана).

Сравнение энергетической эффективности электромагнитного мотор- генератора Дудышева с аналогами – ЭМДГ Адамса и Шкондина

В указанных аналогах ЭМДГ Адамса и Шкондина для вращения постоянных магнитов ротора производится их импульсное электромагнитное отталкивание в момент прохождении ими над полюсами электромагнитов. А в остальное время при обороте ПМ ротора эти катушки работают в генераторном режиме, производят электроэнергию, которая возвращается в бортовой аккумулятор. В результате, на значительной части траектории при вращении ПМ ротора испытывает торможение, причем из-за этого несовершенного алгоритма управления электромагнитами статора ПМ ротора не получает достаточный вращающий момент, т.е. недоиспользуется его скрытая магнитная энергия. Поэтому на серийных китайских электровелосипедах, и на иных электровелосипедах с электромагнитным мотор-колесом Шкондина максимальная скорость движения ограничена скоростью всего порядка 25км/час. Это возникает потому что они одновременно с работой в двигательном режиме начинают одновременно работать и в генераторном режиме т.е. ПМ ротора конкретно начинают тормозиться. В нашем электромагнитном моторе – генераторе с электромагнитом такого тормозного режима нет, поскольку за счет правильного алгоритма управления обмоткой электромагнита, ПМ магнитного ротора испытывают непрерывно ускоряющий момент вращения как от магнитных сил отталкивания так и от притяжения –ПМ ротора и магнитных полюсов статорного электромагнита ,поскольку частота переключения(реверса ) тока в обмотке электромагнита в два раза превышает частоту вращения ПМ ротора. Поэтому ПМ ротора в предлагаемом варианте ЭМДГ работает на полную силу и магнитные силы непрерывно подкручивают ПМ ротора в отличии от мотор колес Шкондина и в отличии от магнитного мотор генератора Адамса Нагрузка вала ЭМД осуществляется именно стандартным электрогенератором вращения Однако если заменить этот стандартный электрогенератор на оригинальный электрогенератор с ПМ на роторе и с бифилярными индуктивными статорными обмотками, то можно существенно устранить влияние противоэдс и в разы снизить механическую нагрузку на вал ЭМД.

1. Предложены и разработаны по конструкции и электрической части оригинальные электромагнитные мотор -генераторы. некоторые из которых уже ранее испытаны.

2. Энергетические показатели предлагаемого электромагнитного мотор- генератора с электромагнитом переменного тока существенно выше чем у сравниваемых аналогов из-за намного более полного использования скрытой внутренней магнитной энергии постоянных магнитов ротора. Поэтому удельная мощность на валу магнитного ротора такого предлагаемого ЭМДГ будет намного (в разы)выше чем в известных совмещенных ЭМДГ Адамса и Шкондина.

3. Именно предлагаемый ЭМДГ способен работать в режиме «вечного двигателя», поскольку электромагнитный мотор с ПМ на роторе вырабатывает избыточную механическую мощность на валу. а требуемую электрическую энергию для .работы его электромагнита с избытком вырабатывает электрический генератор, размещенный на его валу.

www.dudishev2.narod.ru/technology.html

 

www.dudishev2.narod.ru/menergy.html

 

www.dudishev2.narod.ru/menergy.html

 

Русский венчурный моторчик

Наш изобретатель с помощью денег нашего же венчурного инвестора и международного менеджмента пересаживает на новый вид транспорта третий мир

-- Был такой знаменитый частный патентовед Ян Львович Колчинский, -- вспоминает изобретатель нового электродвигателя и основатель компании "Ультрамоторы" Василий Шкондин. -- В конце 1980-х годов надо мной все смеялись, кроме него. Он первый сказал, что мое изобретение революционно, и у него я получил первые уроки бизнеса. Он, во-первых, придумал название "Мотор-колесо Шкондина", а во-вторых, сказал мне: "Делай как Бубка". Бубка не прыгал сразу на суперрекорд, а прибавлял по одному сантиметру в год и был чемпионом мира почти десять лет.

Провал сегвея

Легкий электротранспорт в последние годы был несколько скомпрометирован неудачами фирмы Segway. Продукт этой компании, созданной американским изобретателем Дином Каменом в начале 2000-х, рекламировался ее знаменитыми инвесторами Джоном Дорром и Джеффом Безосом как "следующая великая вещь после интернета". Великой вещью был объявлен электросамокат со сложной системой гироскопов. Ездить на нем надо было стоя, а управлять, наклоняя корпус вперед или назад. В маркетинг компания вложила огромные деньги, но со временем оказалось, что транспортного средства завтрашнего дня из Segway не получится. Самокат вышел слишком тяжелым, слишком громоздким, совсем не таким устойчивым, как было обещано, с радиусом автономной езды лишь около десяти километров и, главное, дорогостоящим -- от шести тысяч долларов и выше. Его охотно покупали как дорогую игрушку, но не как личное транспортное средство или транспорт для бизнеса: Segway предлагали складским работникам, полиции, на него навешивали грузовые отсеки, но дальше пилотных проектов не пошло.

Реклама

Джо Боуман. партнер венчурного фонда "Русские технологии" и по совместительству нынешний директор "Ультрамоторов", считает, что проблема Segway была не в технологии, а в идеологии. "Это типичная предпринимательская ошибка, -- объясняет Боуман. -- Нельзя просить людей переделать свое поведение ради того, чтобы продать продукт. Люди так не катаются. Есть отработанные годами формы: мопед, скутер, автомобиль. Их и следует держаться".

Так получилось, что одновременно с Segway начал развиваться и рынок электробайков -- мопедов с электрическими моторами. Современный электробайк, как правило, использует "мотор в колесе" -- агрегат в виде диска, закрепленный на той же оси, что и колесо. Основные потребители электробайков -- страны Южной и Восточной Азии, где двух- и трехколесные велосипеды и скутеры до сих пор остаются преобладающим видом транспорта. А типовой мотор на электробайке, по сути, традиционный электромотор Грамме образца 1873 года, переделанный в колесный формат. На мотор Грамме и посягнул Шкондин.

Мотор-колесо Шкондина

Автономный электрический двигатель, который компания "Ультрамоторы" разработала и продвигает на рынок, долгое время оставался голубой мечтой инженера. Разработать проводной электротранспорт было несложно, троллейбусы и трамваи существуют уже почти столетие. А вот развитие аккумуляторного транспорта значительно сдерживал вес аккумуляторов: это и мощность, и скорость, и дальность, и цена. К тому же традиционный электродвигатель, устанавливаемый на электротранспорте, имеет слишком низкий КПД, чтобы быть практически интересным. Решать проблемы можно, наращивая емкость аккумуляторов на единицу веса, а можно пытаться так изменить конструкцию двигателя, чтобы преобразование электрической энергии в механическую было эффективнее. "Ультрамоторы" пошли по второму пути.

"Двигатель Шкондина" (запатентованный впервые в 1991 году именно под таким названием) устроен следующим образом. Это "мотор в колесе" -- дисковый агрегат, который крепится непосредственно на ось ведущего колеса и управляется без трансмиссии, просто путем регулирования числа оборотов. Соединенный с осью колеса ротор, по периметру которого закреплены постоянные магниты, вращается в статоре, на котором размещены соленоиды. На соленоиды подаются краткие импульсы тока, создающие переменное магнитное поле, толкающее магниты ротора. Принцип действия двигателя чем-то похож на принцип работы линейного ускорителя: магнитное поле возникает, действует на магнит на роторе строго определенное время и тут же отключается. "Моторы в колесе" традиционной сейчас конструкции вынуждены использовать передачу -- понижающий редуктор. "Мотор Шкондина" необходимости в редукторе не имеет: его обороты можно контролировать напрямую.

Движением управляет релейный триггер, создающий импульсы тока необходимой силы и последовательности. Это электромеханическое устройство, скромно названное в патенте на него "триггер Шкондина", как объясняет изобретатель, "перехватывает неиспользованные части импульсов и отгоняет их назад в аккумулятор". Благодаря этому гораздо меньшая часть исходного заряда аккумулятора тратится на нагрев обмоток и прочие посторонние цели, а КПД двигателя существенно возрастает.

В итоге двигатель Шкондина, он же "Ультрамотор", позволяет выжимать из одного ампер-часа аккумулятора намного большее расстояние при тех же эксплуатационных условиях, чем движок обычного электробайка -- в самых легких конфигурациях вплоть до троекратного превосходства. Кроме этого, по сравнению с другими "моторами в колесе" схема Шкондина отличается значительной простотой: в ней только пять узлов. Это существенно облегчает и производство двигателя (что особенно важно для развивающихся стран), и снижает его себестоимость.

Наш инвестор лучше

Компания "Ультрамоторы" родилась, когда Шкондин после многих лет поисков нашел первого инвестора -- британскую компанию Flintstone. В сентябре 2003 года Flinstone инвестировала в "посевной раунд" 1 млн долларов, создала со Шкондиным компанию в Великобритании и наняла первый состав команды. Компания развивалась медленно, и, возможно, если б не правильно подобранный в 2004 году новый инвестор, "Ультрамоторы" уже прекратили бы существование: раздутый штат, высокие зарплаты разработчиков и перенесение части НИОКР в Британию привели проект к состоянию финансового краха. Бизнес "Ультрамоторов" был фактически вытащен российским венчурным фондом "Русские технологии".

В апреле 2004 года "Русские технологии" вложили в "Ультрамоторы" в первом раунде 1,1 млн долларов инвестиций и активно занялись делами компании. К компании был прикомандирован инвестиционный директор "Русских технологий" Джо Боуман. Практика, когда венчурный фонд переводит одного из своих сотрудников в портфельную компанию, достаточно распространена -- например, известный фонд Draper Fisher Jurvetson за полтора года до сенсационной продажи компании отрядил в знаменитый Skype свою сотрудницу Тристен Лэнгли -- развивать бизнес в США, куда создателей компании не пускали судебные иски. Но для России такая практика пока уникальна. "Мы вошли в компанию с огромной перспективой, но с кучей семейных проблем, -- рассказывает Боуман. -- Часть -- языковой барьер, часть -- неправильные люди. Мы начали с изменения управляющей команды и вместе с Василием построили новую. Благодаря этому мы и смогли перейти от производства на кухне к производству на заводе".

"Изменением управляющей команды" Джо называет практически полную замену всех топ-менеджеров и резкое сокращение инженерного штата. Основатель компании, Шкондин, этому по прошествии времени только радуется. "Я четко понял для себя, -- говорит он, -- что для развития и успеха нужна фирма, но фирма не значит много народу. Иногда лучше меньше. У меня было много людей, которых я не выбирал, и мы возились месяцами, не продвигаясь вперед. Теперь мне разрешили брать людей самому, а не навязывают их -- и мы стали развиваться быстрее".

Сейчас в подмосковном Пущине кроме Шкондина над разработкой всех видов транспортных средств (электробайки, электроскутеры, электромобили и такие перспективные модели, как вертолет и субмарина) трудятся только три инженера. "Боуман справляется с развитием бизнеса лучше, чем вся моя предыдущая команда, -- оценивает Шкондин результаты смены руководства. -- Он принес в бизнес целенаправленность, скорость, решительность. Кроме этого, инновационный менеджер должен осознавать хотя бы азы инженерных особенностей бизнеса. Не надо быть асом, но надо понимать, почему CTO говорит -- это возможно, а это нет. Я учил-учил менеджера англичанина, и не мог научить. Джо учить не надо".

Через год, в мае 2005-го, после того как компания заключила первые соглашения с производителями велосипедов, "Русские технологии" инвестировали в "Ультрамоторы" еще 1 млн долларов. Вскоре после этого, в июне 2005 года, компания пригласила на работу нового CEO, Пола Дайсона, предпринимателя с двадцатилетним стажем. До этого Дайсон руководил компанией Sterilox, производившей оборудование для стерилизации медицинских предметов. В четвертом квартале 2005 года в Индии началось первое серийное производство электробайков с "Ультрамотором" в качестве двигателя.

Индийский вариант -- это электромопед в двухколесной и трехколесной модификациях. Трехколесный мопед -- трехместное транспортное средство, похожее на традиционную тележку рикши. Для восточных рынков модификация совершенно необходимая. Руководители "Ультрамоторов" говорят, что спрос на такие "тележки" предъявлялся и семьями: двое родителей и ребенок. Индийцы сложные покупатели, на них плохо действуют западные маркетинговые ухищрения, зато хорошо -- потребительские свойства продукта и его цена.

Благодаря тому, что мотор Шкондина прост в изготовлении, "Ультрамоторам" и удалось наладить индийское производство; за японские и тайваньские электробайки индийские OEM-производители браться не решались как раз по причине сложности производственного процесса. Велосипеды и велотележки с мотором Шкондина будут продаваться по цене от 9500 рупий (около 200 долларов), что сопоставимо с месячной зарплатой среднего индийского покупателя велосипеда.

"Я прибавил в терпении, -- рассказывает Боуман. -- Я научился быть очень терпеливым, потому что не все происходит по плану и в нужные сроки. Наладить операционный процесс через несколько границ Британия--Россия--Индия крайне непросто, за день это не сделаешь. Кроме того, приходится управлять непростым процессом диалога культур. Есть индийские-инженеры, есть русские изобретатели. Инженер думает о продукте, изобретатель -- о творчестве. Моя работа иногда состоит в том, что я стою между индийским инженером и русским изобретателем и смягчаю эмоции. Если я потеряю терпение, все рассыплется. Изначально мы в 'Русских технологиях' рассчитывали, что все будет быстро и в 2006 году мы уже продадим компанию. Не вышло. Но результат нас радует, в итоге мы сможем продать очень дорогую компанию".

Сейчас дела "Ультрамоторов" на подъеме. На днях компания вошла в британскую программу господдержки развития чистых технологий и, соответственно, получит дополнительные инвестиции.

колесо шкондина и сверхединица

Вечный двигатель-генератор

Настоящая статья посвящена разработке и описанию принципа работы оригинальной конструкции и электрической схемы простого вечного электромагнитного двигателя –генератора нового типа с электромагнитом на статоре и всего с одним постоянным магнитом(ПМ) на роторе, с полярным вращением этого ПМ в рабочем зазоре этого электромагнита.

Проблема создания вечных двигателей многие столетия будоражит умы многих изобретателей и ученых всего мира.

Интерес к этой теме мирового сообщества по- прежнему огромный и все возрастающий в связи со скорым исчерпанием органического не возобновляемого топлива и особенно в связи с наступлением глобального энергетического и экологического кризиса цивилизации.

При построении общества будущего, безусловно, важно заниматься разработкой новых источников энергии, способных обеспечить наши потребности. А сегодня для России и многих иных стран это просто жизненно необходимо. В будущем восстановлении страны и грядущем энергетическом кризисе новые источники энергии, основанные на прорывных технологиях, будут совершенно необходимы.

Взоры многих талантливых изобретателей, инженеров и ученых давно прикованы к постоянным магнитам(ПМ) и к их таинственной и удивительной энергетике. Причем этот интерес к ПМ даже усиливается в последние годы, в связи с значительным прогрессом в создании сильных ПМ, а отчасти, в связи с простотой предлагаемых конструкций магнитных двигателей (МД).

Сколько энергии спрятано в постоянном магните и откуда она там?

Очевидно, что современные компактные и мощные ПМ таят в себе значительную скрытую энергию магнитного поля. И цель изобретателей и разработчиков таких магнитных двигателей и генераторов состоит в выделении и преобразовании этой скрытой энергии ПМ в иные виды энергии, например, в механическую энергию непрерывного вращение магнитного ротора или в электроэнергию.Уголь при сгорании выделяет 33 Дж на грамм, нефть, которая через 10-15 лет у нас начнет подходить к концу, выделяет 44 Дж на грамм, грамм урана дает 43 миллиарда Дж энергии. В постоянном магните теоретически содержится 17 миллиардов Дж энергии. Конечно, как и у обычных источников энергии, КПД магнита не будет стопроцентным, к тому же у ферритового магнита срок жизни около 70 лет, при условии, что на него не действуют сильные физические, температурные и магнитные нагрузки, впрочем, при таком количестве заключенной в нем энергии, это не так уж и важно. К тому же, есть еще уже серийные промышленные магниты из редких металлов, которые в десять раз сильнее ферритовых и соответственно эффективнее. Потерявший силу магнит можно просто "перезарядить" сильным магнитным полем. Однако вопрос «откуда в ПМ столько энергии»- остается в науке пока открытым Многие ученые считают что энергия в ПМ непрерывно поступает извне от эфира (физического вакуума). А иные исследователи утверждают, что она просто возникает в нем из-за намагниченного материала ПМ. Пока ясности тут нет.

Краткий обзор известных электромагнитных двигателей и генераторов

В мире есть уже много патентов и инженерных решений различных конструкций магнитных двигателей – но практически пока нет в показе таких действующих МД в режиме «вечных двигателей». И до сих пор «вечные» магнитные двигатели(МД) так не созданы и не освоены в серии и не внедряются в реалии и тем более их нет пока в открытой продаже. К сожалению, известная информация в Интернете о серийных магнитных мотор- генераторах фирм «Перендев» (Германия) и «Акойл-энергия» пока в реалии не подтверждаются .Возможных причин медленного прогресса в МД много - но по-видимому главные причины две -или по причине засекречивания этих разработок они не доводятся до серийного производства или по причине низких энергетических показателей опытно- промышленных образцов МД. Следует отметить, что некоторые проблемы создания чисто магнитных двигателей с механическими компенсаторами и магнитными экранами. например, МД шторочного типа, наукой и техникой пока так полностью и не решены.

Классификация и краткий анализ некоторых известных МД.

Магнито – механические магнитные моторы Дудышева /1-3/. При их конструктивной доводке вполне могут работать в режиме «вечных двигателей».

Двигатель МД Калинина – неработоспособный возвратно- поступательный МД с вращающимся магнитным экраном - МД -по причине не доведенного до правильного конструктивного решения пружинного компенсатора.

Электромагнитный мотор «Перендев» – классический электромагнитный двигатель с ПМ на роторе и компенсатором. неработоспособный без процесса коммутации в зонах прохождения мертвых точек удержания ротора с ПМ. В нем возможны два вида коммутации (позволяющей проходить "точку удержания" ПМ ротора - механическая и электромагнитная. Первая автоматически сводит задачу к закольцованному варианту SMOT'a (и ограничивает скорость вращения, а значит и мощность), о второй ниже. В режиме «вечного двигателя» работать не может.

Двигатель магнитный Минато - классический пример электромагнитного двигателя с ПМ ротора и электромагнитным компенсатором. обеспечивающим проход магнитного ротора "точки удержания" (по Минато "точка коллапса"). В принципе это просто рабочий электромагнитный мотор с повышенным кпд.Максимальный достижимый КПД - ориентировочно 100% Неработоспособен в режиме вечного МД.

Мотор Джонсона - аналог электромагнитного мотора «Перендев» с компенсатором, но с еще более низкой энергетикой.

Магнитный мотор – генератор Шкондина –электромагнитный мотор с ПМ, работающий на силах магнитного отталкивания ПМ(без компенсатора). Конструктивно сложен, имеет коллекторно- щеточный узел, его к.п.д. порядка 70-80%. Неработоспособен в режиме вечного МД.

Магнитый Мотор – генератор Адамса –это по сути наиболее совершенный из всех известных - электромагнитный мотор –генератор. работающий как и мотор-колесо Шкондина только на силах магнитного отталкивания ПМ от торцов электромагнитов. Но этот мотор генератор на ПМ конструктивно намного проще. В принципе, его КПД может только приближаться к 100%, но только обязательно при условии коммутации обмотки электромагнита коротким высокоинтенсивным импульсом с заряженного конденсатора. Неработоспособен в режиме вечного МД.

Обратимый магнитный двигатель с внешним магнитным ротором и центральным статорным электромагнитом (Соленоидальный магнитный мотор Дудышева). Кпд не более 100% из -за разомкнутости магнитопровода /4/ Известны и другие МД, но они примерно таких же принципов действия. Но тем не менее, развитие теории и практики магнитных двигателей в мире все же постепенно идет. И особенно ощутимый реальный прогресс по МД наметился именно по малозатратным совмещенным магнито-электромагнитным двигателям с применением в них высокоэффективных постоянных магнитов. Эти ближайшие аналоги – столь важных для мирового сообщества - вечных магнитных двигателей – называются -электромагнитные двигатели – генераторы (ЭМДГ) с электромагнитами и постоянными магнитами на статоре или роторе. Причем они уже реально существуют непрерывно совершенствуются и даже некоторые из них уже серийно выпускаются. Достаточно много появилось сообщений в Интернете и статей о их конструкциях с фото и их экспериментальных исследованиях. Например, известны эффективные, уже испытанные в металле - относительно малозатратные электромагнитные моторы – генераторы Адамса./1/. Причем некоторые простейшие конструкции совмещенных ЭМДГ даже уже дошли до серийного выпуска и массового внедрения. Это, например, серийные электромагнитные мотор-колеса Шкондина, применяемые на электровелосипедах /2/.

Известны и другие МД, но они примерно таких же принципов действия. Но тем не менее, развитие теории и практики магнитных двигателей в мире все же постепенно идет. И особенно ощутимый реальный прогресс по МД наметился именно по малозатратным совмещенным магнито-электромагнитным двигателям с применением в них высокоэффективных постоянных магнитов. Эти ближайшие аналоги –столь важных для мирового сообщества - вечных магнитных двигателей – называются - электромагнитные двигатели – генераторы (ЭМДГ) с электромагнитами и постоянными магнитами на статоре или роторе. Причем они уже реально существуют непрерывно совершенствуются и даже некоторые из них уже серийно выпускаются. Достаточно много появилось сообщений в Интернете и статей о их конструкциях с фото и их экспериментальных исследованиях. Например, известны эффективные, уже испытанные в металле - относительно малозатратные электромагнитные моторы –генераторы Адамса./1/. Причем некоторые простейшие конструкции совмещенных ЭМДГ даже уже дошли до серийного выпуска и массового внедрения. Это, например, серийные электромагнитные мотор-колеса Шкондина, применяемые на электровелосипедах./2/.

Однако конструкции и энергетика всех известных ЭМИГ пока еще достаточно неэффективные, что не позволяет им работать в режиме « вечного двигателя», т.е. без внешнего источника электроэнергии

Источники:
latestenergy.ru, expert.ru, ecost.lviv.ua

Следующие статьи:


21 сентебря 2017 года

Комментариев пока нет!
Ваше имя *
Ваш Email *

Сумма цифр справа: код подтверждения

Популярное:

  • Не работает детский электромобиль причины (97)
  • Мотор колесо для самоката своими руками (69)
  • Электромобили детские схемы электрические (66)
  • Дешевый электромобиль в россии (57)
  • Электродвигатель для электромобиля как его сделать (48)
  • Налог на электромобиль в россии (42)

  • Надавно добавленные материалы:

    Bmw x5 детский электромобиль

    Лицензионный детский электромобиль M 2762 (MP4) EBR-1 BMW X5, белый - оборудован встроенным планшетом, также есть разъёмы для подключения внешних устройств, что делает

    Читать далее

    Детский электромобиль bmw z4

    Доставка в Мариуполь из другого городаДетский электромобиль BMW Z4 белый, Rastar (?81800/1) В этой детской версии элитного автомобиля все, как

    Читать далее

    Bmw x6 jj258 электромобиль

    Детский электромобиль JJ 258 R-1 джип BMW X6 белый - дизайн этого превосходного детского электромобиля сделан в стиле джипа компании

    Читать далее

    Детские электромобили bmw x6

    Детский электромобиль M 0569 BMW X6 кабриолет на радиоуправлении Детский электромобиль M 0569 BMW X6 кабриолет предназначен для детей от 2-до 8

    Читать далее

    Детский электромобиль bmw х6

    Также у нас вы можете приобрести запасной редуктор для электромобиля BMW x6 JJ 258 - редуктор

    Читать далее

    Детский аккумуляторный электромобиль bmw

    Каталог детских электромобилей BMW находится по адресу – http://hybroid.ru/kidselectriccars/bmwДетские электромобили с аккумуляторной батареей вряд ли можно назвать детской игрушкой. Это скорее

    Читать далее

    Детский электромобиль джип bmw

    Детский электромобиль JJ 258 R-4 джип BMW X6 синий - детский электромобиль имеет обтекаемый корпус с изящными изгибами, яркие

    Читать далее